INTRODUCTION
Giant congenital melanocytic nevi are very rare, with a reported incidence of one in 20,000 births. These lesions are associated with a risk of malignant melanoma and neurocutaneous melanosis and also impact physical appearance. Excision is preferred due to the possibility of malignant melanoma, neurocutaneous melanosis, or aesthetic concerns [
1].
Tissue expansion (TE) for the removal of giant congenital melanocytic nevi is performed in multiple stages; nevertheless, the technique is considered a reliable reconstructive method to achieve optimal aesthetic and functional outcomes. TE provides extra skin with a better color and texture match than skin grafts as well as minimal donor site deformity, and it allows for repeated use of the expanding donor site [
2]. Reconstruction of the upper extremities can be a major challenge depending on the anatomical site of the lesion, such as the shoulder, axillary, or elbow region, due to the lack of sufficient tissue with adequate elasticity and durability. A thoracodorsal artery perforator (TDAP) flap can be transferred to various anatomical regions because it can be harvested with a long pedicle, is relatively pliable, and protects against continuous mechanical stress. In patients with large lesions, the combination of TE and a TDAP flap provides extra skin to cover the defect and reduces the number of additional procedures required. In cases in which limitations on donor site expansion exist, however, it is necessary to account for the need to perform additional expansion at the defect site in order to achieve coverage of the deficit.
We report a case of a giant congenital melanocytic nevus of the left upper extremity, wherein we performed limited expansion of a TDAP flap at the donor site and sequential re-expansion after the pre-expanded pedicled TDAP flap was transferred to the defect that remained after removal of the nevus.
DISCUSSION
Giant congenital melanocytic nevi involve large areas that are more than 20 cm at the point of the greatest diameter [
3], that comprise more than 1% of the total body surface area in the head and neck region, or that comprise more than 2% of the total body surface area elsewhere [
4]. The face and hands may also display melanocytic lesions [
3]. The treatment modalities include non-excisional and excisional methods. The former includes dermabrasion, laser ablation, and chemical peel treatment. The latter include staged or en bloc excision with primary closure, skin substitution or skin grafting, and flap coverage. Non-excisional methods achieve a reduction in the number of superficial nevus cells only, which masks malignant changes of the residual cells in the deep dermis. Therefore, surgical excision is preferable, as it can result in the elimination of all nevus cells. When the lesion is large enough to make conventional flap coverage challenging, clinicians must make use of more sophisticated modalities, like an extended flap, a chimeric flap, or expansion.
If a giant congenital melanocytic nevus affects the entire upper extremity, a local flap may not provide coverage of the full area due to a lack of skin around the defect. Split-thickness skin graft or full-thickness skin graft can provide good coverage of large defects. However, these techniques produce noticeable differences in certain characteristics, such as color and texture, between the healthy skin and the grafted skin. Dysfunction of the anatomical region, such as in the joint areas, can occur due to gradual contraction, and these areas require thin, pliable, cushioned coverage due to the potential for ulceration of the grafted skin under continuous mechanical stress [
5]. Additionally, skin grafting can lead to morbidity and prolonged healing of the donor site, complicating reconstruction [
6]. Skin grafts covering large circumferential defects of the extremities can also cause prolonged swelling or lymphedema of the distal regions, including the hand [
7,
8]. Flap coverage—as in the use of a latissimus dorsi flap with vascularized lymph node transfer or a myocutaneous flap—limits lymphedema of the upper extremities after oncologic surgery [
9,
10]. Therefore, skin grafting is considered to be a secondary measure for coverage of large defects or the joint areas.
Although TE for nevus removal requires multiple stages, this technique is considered a reliable method for the reconstruction of giant nevi to achieve optimum aesthetic and functional outcomes. TE provides extra skin with a more closely matching color and texture and allows repeated use of the expanding donor site.
The TDAP flap is an appropriate choice for several anatomical regions because of its reliable anatomy and ability to be thinned without compromising blood supply, as well as the possibility of harvest with a long pedicle, the pliability of the flap, and the absence of significant donor site morbidity [
11,
12]. Pre-expansion of the TDAP flap can provide extra skin for coverage of the defect with reduced donor site morbidity and can reduce the number of additional operations when the lesion is too large to treat with a single procedure. Moreover, pre-expansion can increase vascularity and improve the safety of the distal regions. Notably, perforator flaps, including TDAP flaps, have the disadvantage of potential damage to perforator arteries. Therefore, the operator should perform careful preoperative evaluation of perforators with Doppler ultrasound and place the tissue expander in a way that avoids direct injury to the vessels. It may also be helpful to include a small amount of muscle and fibrotic tissue around the pedicle.
A disadvantage of TE is that it requires multiple operations. Requiring patients to undergo several procedures may result in added discomfort, increased financial burden, and increased risk of complications, such as infection at the operative site. To overcome these limitations, we planned for just two procedures with a large tissue expander; however, we had to consider the sex of the patient and the patient’s typical daily life during the expansion. In our case, we performed subsequent expansion of the TDAP flap primarily at the donor site and secondarily at the recipient site. The patient was pleased with the process and results, despite the financial burden and repeated hospital visits. Use of the unconscious sedative aided in the recovery of the patient from several of the operations. Furthermore, the transferred flap was thin, and provided just enough stability and vascularity for multiple re-expansions [
13]. The re-expanded transferred flaps are also sufficient to cover defects from the removal of any newly developed or recurring nevi. Alternatively, a free pre-expanded TDAP flap may have also covered the defect, but use of the pedicled flap was preferred considering the arc of rotation of the thoracodorsal arteriovenous pedicle and the ability to make a flap on the ipsilateral side.
A limitation of our process is that it requires several procedures; however, we still achieved minimal scarring and ensured minimal disruption to the patient’s daily life. This limitation is due to the use of a relatively small expander at the donor site and the planned re-expansion of the transferred flap, the expansion capability of the skin, subjective symptoms of expansion, and so on. A larger expander, however, can provide a larger amount of skin and reduce the number of operations, but it increases the risk of flap ischemia and skin necrosis, rupture, long scarring, discomfort, and failure of expansion [
14,
15]. Together, the surgeon and the patient can choose a method that meets the goal of the operation through clear discussions.
We present a case of the successful and complete excision of a giant nevus, which nearly spanned the circumference of the upper arm; the resulting defect was covered using a pre-expanded pedicled TDAP flap and staged re-expansion of the transferred flap on the upper arm without complications. Additionally, the use of day surgery in the outpatient department and unconscious sedation were good options for the later procedures that utilized TE.